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The random Ising chain is a very simple model with a large number of 
metastable states. Simple analytical calculation of the relaxation of energy and 
magnetization is presented. The effect of a nonzero magnetic field is discussed 
qualitatively. The slow relaxation in this simple model resembles that observed 
in spin glasses. A weak magnetic field can produce rather strong effects. The 
magnetization is shown to be a nonanalytic function of the field. The field also 
greatly alters the metastability characteristics. 
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I, I N T R O D U C T I O N  

The existence of a large number  of metastable states is responsible for some 
properties of spin glasses. (l-n) In  part icular  the extremely slow decay of the 
remanent  magnetizat ion and  the long relaxation time of the thermal energy 
at low temperatures are characteristic features of spin glasses. These fea- 
tures have been studied extensively in the literature. They  are highly 
nontrivial  and  their analyses are generally very involved. 

In  this paper,  we a t tempt  to gain some unders tanding of the metasta-  
bility by  studying the simplest system with a large number  of metastable 
states, namely,  the one-dimensional  Ising model  with r a n d o m  nearest- 
neighbor  interaction. (1'5'6) The simplicity of this model  allows us to carry 
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out some simple analytical calculations which are very instructive. How- 
ever, even for such a simple model, we have not been able to push analytic 
calculations very far. Numerical calculations have also been done to 
supplement the analytic work. In the case of a nonzero magnetic field, the 
problem becomes very difficult. (7-9) We have been able to give only a 
heuristic analysis, which gives a qualitative account of some very dramatic 
effect of the field. 

The Hamiltonian of the Ising chain is described by 

N N+I  
1 E JitiaiOi+l - h 2 ai (1.1)  

H =  - 2 i = 1  i=l 

where the spin variables ~r i = + 1. The sign of the bond energies t i are __ 1 
with equal probability and are distributed independently. The magnitudes 
of the bond energies Ji are also independently distributed with certain 
probability distribution p(J). In this paper general forms of p(J) will be 
considered, but we confine most of our calculation to the case of exponen- 
tial distribution 

p(J )  = e x p ( - J ) ,  J > 0 (1.2) 

When the small-J part of p(J) is crucial, we shall consider cases with 

p(J)ocJ" ,  n > - I  for small J (1 .3)  

Let us describe some terminologies to be used below. If a bond Ji is 
greater than its nearest neighbor bonds Ji_ 1 and J/+ 1, Ji will be called an 
energy maximum, on the other hand, if Ji is smaller than Ji-1 and Ji+l, Ji 
will be called an energy minimum. A collection of n consecutive bonds 
(Ji+l through Ji+n) form an energy well if both Ji and Ji+,+l are greater 
than all of the n bonds. The lowest energy among the n bonds, denoted Jg, 
is called the bottom of the well. It is clear that each energy minimum is the 
bottom of a well, and an energy well may contain several energy minima. 

The dynamics is assumed to be generated by single spin-flips caused 
by thermal noises coupled to each spin. For our model, the relevant 
dynamics can be conveniently described by the motion of kinks over 
energy barriers. By a kink at the energy bond Ji, we mean that J~tioio~+ ~ 
< 0. The energy barrier for a kink to move from the bottom of the well to a 
lower energy bond outside the well is called the barrier height of the well. 
We assume that when the observation time t is longer than e A/r, the energy 
barrier A is readily overcome, and when t < e A/T, the barrier is formidable. 

In Section 2 we review the static properties of the system at low 
temperatures and zero field. In this case only a small number of kinks exist 
in the system. On the other hand, when the system is at a high temperature, 
or in a large magnetic field, nearly one half of the bonds have kinks. 
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In Section 3 dynamic effects are considered in the low-temperature 
limit. From the motion of kinks a simple argument is given to describe the 
relaxation of the thermal energy and the magnetization, when the system is 
suddenly quenched to a low temperature, or when the large magnetic field 
is suddenly switched off. For the p(J) given by Eq. (1.2), the decay of 
thermal energy and magnetization per spin at Tin t >> 1 are found to follow 

AE/N,.~ Tin t-  t -2T (1.4) 

M / U ~ t  -T (1.5) 

The magnetization decays more slowly. 
In Section 4 time-dependent thermodynamic quantities are studied in 

more detail. States with even (or odd) numbers of kinks are assumed to be 
in thermal equilibrium in the energy wells considered. The time-dependent 
energy so obtained has the leading term agree with the simple argument 
given in Section 3; and in the infinite-time limit, the energy reduces to the 
equilibrium value. The energies and the specific heats are also calculated 
numerically. 

In Section 5 the zero-field susceptibility is derived and calculated 
numerically. At each time, a hump in the susceptibility is observed as a 
function of temperature. 

The effect of a weak magnetic field is studied qualitatively in Section 
6. The magnetization at very low temperatures is found to follow a power 
law of the field. In particular, for n -- 0 [see Eq. (1.3)], we obtain 

M / U ~ h  '/3 (1.6) 

The specific heat at very low temperatures is found to be proportional to T. 
For n = 0, it is approximately independent of h for T<< h 2/3. The effect of 
h on metastability is discussed. 

Further discussion is given in Section 7. 

2. STATIC PROPERTIES AT LOW TEMPERATURES 

At T - - 0  and h = 0, no kinks exist in the system. The ground-state 
energy per spin of the Ising chain is 

Eg/U = - �89 (2.1) 

where ( )p is the average over the distribution p(J). For the exponential 
distribution, Eq. (1.2), Eg/N = - 1/2. At finite temperature, or finite field, 
some kinks will be excited. When a kink is excited at the bond Ji, the 
energy of the system is increased by the amount aT,.. In the following, we use 
AE to denote the energy of the system, as measured from Eg. That is, 
A E = E - E g .  
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2.1. Thermal Energy and Specific Heat at Zero Field 

In thermal equilibrium, the probability of the existence of a kink at an 
energy bond Ji is independent of the existence of kinks at other bonds. At 
temperature T, the probability of a kink at 3",. is given by 

fk(Ji) = (1 + eJ ' / r )  - '  (2.2) 

The energy of the system in equilibrium with a heat bath at a temperature 
T is 

AE(T)= ( ~J~(l + eS'/r)-l)e (2.3) 

At very low temperatures, only energy bonds with Ji << 1 may have a 
kink. At J << 1, assume p(J) has the general form 

p (J) = A J", J<< 1 (2.4) 

where A is a constant, and higher-order terms are neglected. It is necessary 
that n > - 1 ;  otherwise the integration of p(J) diverges. 

From Eqs. (2.3) and (2,4) 

A E ( T ) / N  = AI,+IT "+2 + . . .  (2.5) 

where 

s ZndZ (2.6) 
I~=  l + e Z  

Since I, are related to the Riemann zeta functions ~(n), I,  = n! (1 - 2 -~) 
~(n + 1), they can be obtained directly from mathematical tables. For 
example, I 0 = ln2, 11 = ~r2/12, etc. 

For the exponential distribution, Eq. (1.2), it is easy to calculate the 
higher-order terms, and obtain 

k n Tn+2 AE(T) _ ( -  1) 1,+ t (2.7) 
N n! n=0 

It is interesting to note that the leading term in AE, Eq. (2.5), is contributed 
from the kinks at the energy minima alone. The energy of the kinks at the 
energy minima is given by 

AE J)p(J e(S (2.8) 
N 

The factor [f~fp(J')dJ'] 2= 1 -  O(J n+l) is the probability that the two 
neighboring bonds of J have energies higher than J. The leading term of 
Eq. (2.8) is exactly the same as Eq. (2.5), and the first correction term is of 
order T 2n+3. 
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From the energy of the system, Eq. (2.3), (2.5), or (2.7), the specific 
heat is readily obtained by C = ~E/~T. At low temperatures, Eq. (2.5) 
gives 

C _ A(n + 2 ) I , + , T  "+'  (2.9) 
N 

2.2, Magnetic Susceptibility 

In the zero-field limit, the susceptibility of a spin system is given by 

N N 
1 (2.10) 

i = l j = l  

For the Ising chain with nearest-neighbor interaction, 

<OiOi+k> = IX tanh ~-~ (2.11) 
j~i 

Since t i = _+ 1 with equal probability, when we sum over all systems of 
different t,.J~, the thermal average (aio~+k> vanishes for k v ~ 0. The only 
contribution to X is from (o2> = 1. Therefore the random Ising chain has 
X = N / T  in the zero-field limit. The magnetization in the low-field (hi  T 
<< I) limit is of the form 

M _  h + O(h3) (2.12) 
N T 

This result is independent of the distribution p(J). 

3. MOTION OF KINKS AND RELAXATION OF ENERGY 
AND MAGNETIZATION 

At high temperatures all spins are randomly oriented, and the number 
of kinks in the system is N/2.  When the system is suddenly quenched to a 
low temperature, the energy of the system relaxes rapidly first as all kinks 
move down toward the energy minima and annihilate each other when two 
kinks meet at a bond. When there are an even number of kinks moving 
down to an energy minimum, the kinks annihilate and no kinks remain. On 
the other hand, an energy minimum has one kink left if an odd number of 
kinks move down to the minimum. Since we are not interested in this rapid 
relaxation period, we will consider our initial state as that with one or no 
kink at each energy minimum with probability 1/2. What we will investi- 
gate is the behavior of the system after the rapid decay to this initial state. 
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3.1, Relaxation of the Thermal Energy 

Consider an energy minimum J~ as shown in Fig. 1. Jn is the bot tom of 
an energy well of barrier height A. If there is a kink in the well (fk = 1/2 
initially), the kink spends most of the time at the minimum Jn. But if there 
is a lower minimum arm, then there is a finite probability that the kink 
climbs over the barrier and moves down to Jm" After the kink has moved to 
arm the probability that a kink exists at J~ reduces to zero. If there was a 
kink (fk = 1/2) at arm, it will annihilate with the kink from J ,  ; and if there 
was no kink at Jm, the kink from "In will stay at Jm" Therefore the 
probability that a kink exists at Jm remains unchanged ( =  1/2). 

The characteristic time for a kink to climb over an energy barrier A is 
t = "r exp (A/T) .  We will assume that the time for a kink to move to a 
neighboring lower energy bond is r = 1. This suggests that the probability 
for a kink to exist in any well of barrier height A is 1 /2  for t < exp (A/T) .  

If we define p(J)D(J,A)dJ as the number  of energy wells per spin 
with energy of the bot tom lying between J and J + ab r, and barrier height 
larger than A, then the energy of the system at time t is 

aE(t) 1 
N 2 Jo ~176 l (3.1) 

where A -- Tlnt and 1 /2  is the probability that a kink exists at the bot tom 
of the energy well. 

The factor D(J, A) is given by 

D ( J , A )  = ~'~ ne2(j + A, oo)en- l (J ,J  "[- A) 
n = l  

(3.2) 

Ji 

- - I  . . . . . . . .  

Jm 

i 

Fig. 1. A Ji vs. i plot. If there is a kink at the energy minimum J,, then there is a finite 
probability that the kink climbs over the barrier A and moves down to the lower minimum Jm" 
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where 

P(a,b) = fabp( j )dJ  (3.3) 

Each term in the summation represents an energy well of n bonds. The 
second factor p2( j  + A, oo) is the probability that we have two energy 
bonds higher than J + A to ensure that the barrier of the well is higher than 
A. The last factor p n - l ( j , j +  A) is the probability that we have n -  1 
intermediate energy bonds, and the first factor n indicates that the bottom 
of the well J can occur at any of the n positions. 

For the exponential distribution, Eq. (1.2), we get 

D(J ,A)  = e-(2J+2A)[ 1 - e-S(1 - e -a )  ] - 2  (3.4) 

and 

A E / N  = ~,, n (I - e -A)" - l e  -2A 
n=l  2 (n  -{- 2) 2 

At A << 1 we have a logarithmic decay 

A E -  1 [ 1 - 7  ] 
N 18 ~ A +  . . .  

(3.5) 

and for A >> 1 a power law decay with exponent 2 T 

AE ___ __A e-2A 
N 2 

= 1 T in t .  (t) -2r (3.7) 
2 

The behavior of AE at A >> 1 depends strongly on the distribution 
p(J). For example, it would decay much faster if p(J)  is a Gaussian 
distribution. 

We have compared Eq. (3.5) with computer simulation results (to 3000 
Monte Carlo Steps per spin) for systems of 1000 spins. In the simulation the 
time is set equal to 1 when the energy of the system is equal to 1/18. For 
T = 0.01, Eq. (3.5) is in good agreement with the Monte Carlo result. For 
T = 0.1 the time-dependent energy predicted by Eq. (3.5) (solid line in Fig. 
2) is lower than the Monte Carlo result (dashed line in Fig. 2). This is 
expected because our simple theory assumes that all kinks vanish as t ~ or 
i.e., the equilibrium thermal energy is neglected. For T = 0.01 the equilib- 
rium thermal energy AEeq/N = 8.0 X 10 -5 [obtained from Eq. (2.7)] is in 

1 
- 1 8 [ 1 - 7 T l n t + . . . l  (3.6) 
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Fig. 2. Relaxation of the thermal energy when the system is quenched from a high 
temperature to a low temperature T. The solid line is obtained by assuming that at most  one 
kink can exist in a well, Eq. (3.5). The dashed line is the Monte Carlo simulation for systems 
of 10 3 spins (averaged over five systems) at T = 0.1. 

fact negligible. While for T = 0.1, AEeq/N = 6.7 X 10 -3 is comparable to 
the thermal energy at A = 0. 

3.2. Relaxation of Remanent Magnetization 

When the Ising chain is exposed to a large magnetic field all spins are 
parallel to the external field. All antiferromagnetic bonds have a kink. 
When the magnetic field is suddenly switched off, and the system is kept at 
a low temperature, the kinks move down to the energy minima and 
annihilate each other as described in Section 3. As before, we will consider 
our initial state as the one with a kink at each energy minimum with 
probability 1/2. The relaxation of energy is the same as described in 
Section 3.1. 

As pointed out by Fernandez and Medina, (5) during the motion of 
kinks, a spin flips each time when passed by a kink. If a spin is passed by 
an even number of kinks, its direction does not change. On the other hand, 
if the spin is passed by an odd number of kinks, its spin direction is 
reversed. Therefore, all spins which have the probability to be passed by 
kinks do not contribute to the magnetization when we average over 
t,.= +1.  

During the fast relaxation, all kinks move down to energy minima. The 
only spins that will not be passed by any kinks are the pair of spins which 
are joined by ferromagnetic energy maxima. Since each energy bond has a 
probability 1 /2  to be ferromagnetic, and a pair of spins has a net magnetic 
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moment of 2 units, the remanent magnetization of our initial state is equal 
to the number of energy maxima in the system. The number is N/3 
because if we generate three numbers independently, the probability that 
the second number is the largest is 1//3, independent of the distribu- 
tion p(J). 

After the fast relaxation, we use the assumption made in Section 3.1 
that kinks in the bottom of the energy wells can climb over the barrier, 
cross the energy maximum, and move into the neighboring well. At time t 
consider the spins and the energy bonds located between the bottoms of 
two adjacent energy wells of barrier higher than Tin t, The only spins that 
will not be passed by any kink are the pair of spins joined by the bond 
which has the largest value of J. This energy bond is further required to be 
ferromagnetic. 

Therefore the magnetization of the system at time t is equal to the 
number of energy wells with barrier height larger than A = T l n  t. 

M(t) 
fo~p(J)D(J, A) dJ i 

For the exponential distribution, we get 

M(t)N 2~2~ [ - �89 ~)2] 
- - , - F  ( 1 : - - ) 3  L - A - I -  (1 , ) - I -  - -  

(3.8) 

(3.9) 

M 
N 
0.3 

0.2 

0.1 

I i J I 
1 2 

Tint 

Fig. 3. Relaxation of remanent  mangetization when a strong magnetic field is suddenly 
turned off at a low temperature T. The solid line is obtained from the assumption that at most  
one kink can exist in an energy well, Eq. (3.9). The dashed line is the Monte Carlo result for 
five systems of 10 3 spins, generated by the exponential distribution, Eq. (1.2), at T = 0.1. 
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where ~/-- e-A. At A << 1, 

M(t) 1 / 1 -  A ) N 

and for A >> 1 

(3.]0) 

M(t) ~_ e-  A 
N = ( t ) - r  (3.11) 

The relaxation of the magnetization is much slower than the relaxation 
of thermal energy. This result is in agreement with Monte Carlo observa- 
tion. The quantitative agreement between Eq. (3.9) and the Monte Carlo 
data, however, is not good. (See Fig. 3.) 

4. TIME-DEPENDENT THERMODYNAMIC PROPERTIES 

In the previous section we have assumed that: (i) For any energy well 
with barrier height A the probability to have a kink is 1 /2  for t < e A/T and 
0 otherwise. (ii) The kinks exist only at the bottom of the energy well. The 
assumption that the probability changes abruptly is incorrect because it 
should vary smoothly. But when we sum over energy wells of various A the 
discontinuity of the probability does not make any significant error as long 
as the distribution function p(J)  does not have a sharp change. The 
assumption that only one kink can exist in the energy well does make our 
energy smaller than the Monte Carlo result. 

To improve our theory we modify our assumption as follows: (i) At 
time t only energy wells with barrier height larger than A = T l n  t need to 
be considered. For mathematical convenience we ignore energy bonds 
which are higher than A + Jg (Jg is the energy of the bottom bond) in each 
well, because these bonds are not likely to have a kink at low temperatures. 
(ii) Any energy bond considered may have a kink. Since the kinks can be 
created or annihilated in pairs within a well, the energy well may have 
either even numbers of kinks or odd numbers of kinks, with equal probabil- 
ity 1//2. (iii) If the number of kinks in a well is even, the well can be in any 
spin state with even number of kinks (will be called even state hereafter). 
The probability of the well to be in a state (oi} is proportional to the 
Boltzmann factor e x p ( - H  (o ;} /T) .  Similarly, all odd states may exist in a 
well with probability proportional to the Boltzmann factor. However, odd 
states and even states do not mix in any energy well. 

4.1. Time-Dependent Thermodynamic Quantities 

With these assumptions we can define a time-dependent free energy 
F(A) in the following way. For an energy well of n bonds it can be shown 
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that 

and 

ZE(J t }=~ ~ e x p ( - H ( o i } / r  ) (4.1) 
even  s ta tes  

=�89 + Z  ) (4.2) 

Zo{J~)==- ~ e x p ( - H { o i } / T  ) (4.3) 
o d d  states  

= �89 - Z _  ) (4.4) 

where Z+ and Z are defined as 

n 

Z+_ ~ e-eg/T]-~ (1 _+ e - s# r )  (4.5) 
i = l  

The well may have an even or odd number of kinks with probability 1/2. 
The average free energy of the well is then 

F{J, } ~�89 {Ji } + �89 {Ji } 
= - �89 T( lnZ  E + l n Z  o ) (4.6) 

Other thermodynamic quantities of the energy well are also well defined 
and consist of an even part and an odd part. 

For any finite Ising chain with fixed boundaries, or with periodic 
boundary conditions, the number of kinks in the system is even (or odd) all 
the time. The equilibrium free energy of the system is simply F e (or Fo). 
And for a free boundary Ising chain with N >> 1, Z << Z + ,  both F e and 
F o are equal to the equilibrium free energy. 

The time-dependent thermodynamic quantity A of the Ising chain at 
time t is then defined as the summation of quantities A {J~} of all energy 
wells with barrier height larger than A = Tln t. 

A(t) oo fo 
N - tiff=l n P(Jg)dJgP2(Jg + A, oe) 

• Ae(j2) 2(J + A e(j )aj3 . . . 
-,s~ % 

X(Jg+Ap(Jn)dJn�89 + A o { J i }  ) (4.7) 
.% 

Here .Jg is the bottom of a well of n bonds. The ( n -  1) intermediate 
energies J2,J3, . . . ,  .In, lie between Jg and Jg + A. Ae, o {J/} is the quantity 
A of the well of energies {Jg,J2,J3, . . . ,  J,,} in even (or odd) states. Other 
factors are the same as given in Eq. (3.2). 
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4.2 .  T 2 Term of the Time-Dependent Energy 

The leading contribution to the t ime-dependent  energy c o m e s  from the 

Tint<< 1 

(4.12) 

- [ 1-e-a  ] 12 2 + �9 �9 �9 for Tint>> 1 (4.13) 

odd term E o (J/) and with only one kink in a well: 

iJie-J,/r + 3-kink terms + �9 �9 �9 

Eo {Ji } = ~ i e_ j , / r  + 3-kink terms + �9 �9 �9 

i=/=gA ie - Ai/ T 
= Jg + + . . .  (4.8) 

1 + ~i~ge -a'/T 

where Jg is the bottom of the well and m i -~- J i  - Jg. If we consider only the 
leading term Jg, Eq. (4.7) then gives the same result as Eq. (3.1). 

Since the term Jg does not contain a Boltzmann factor, when the 
energy is averaged over the distribution p(J)  we get a term zeroth order in 
T. If the integrand contains a factor e -J#r, each power in Ji and d/i 
contributes a power T when the integration over dJ i is carried out. There- 
fore the second term in the time-dependent energy is the T 2 term, cofitrib- 
uted from the part which contains only one kind of Boltzmann factor, 

E(2)(J/} = E Ai (4.9) 
i~g  1 q- e Ai/T 

There are (n - 1) terms in Eq. (4.9). Each term has the same contribution. 
Equation (4.7) reduces to 

n ( n  1) = ~ -(2A+3J) n-2 A) AE(2)( t ) /N ~" f o e  ~dJgP (Jg,Jg + 
n=l 2 

X f0Ae-(Jg+A ) AdA 
1 + e a / r  

= f o  ~ e-4J~e- 2a dJg . f0Ae-A AdA (4.10) 
[1 -- e-J~(1 -- e -a) ]3 1 + e a/T 

Let ~/= e - a ;  then the first integration gives 

I = [ � 8 9  3~ + 3 ( - l n ~ ) , 2  + ~ 2  + ~3]/(1 - ~) 4 (4.11) 

The second integration yields fr2T2/12 + O(T 3) for A / T  = In t >> 1. There- 
fore the T 2 term in the time-dependent energy is 

AE(2)( t ) ~2T2[1  ~0 ] 
N - 12 4 + + . . -  for ln t>>l  and 
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At T i n t  >> 1, AE (2 ) /N  is only one-half of the equilibrium value. This 
is expected because when Tin  t >> 1 both E e = E o = ! E and Eq. (4.13) is 2 eq 

contributed from E o only. The leading contribution of even states to the 
time dependent energy comes from two kink states with one kink at Jg and 
another kink at any of the (n - 1) bonds Ji 4: Jg, i.e., 

A i + 2Jg + . . .  (4.14) 

i4~g 1 + 

For ln t  >> 1 and T i n t  << 1, Eq. (4.14) contributes a term proportional to T 3 
to the time-dependent energy. 

At Tln  t<< 1 the contributions to the time-dependent energy and 
specific heat are mainly from the odd states. When Tlnt>> 1 both even 
states and odd states should have equal contribution since Z_  << Z+ and 
Z E ~ Z o. But it is difficult to show analytically how the contribution of 
even terms changes from T 3 to T 2. 

4.3. Numerical Calculation of Time-Dependent  Thermodynamic 
Quantities 

Equation (4.7) cannot be evaluated directly. To determine the time- 
dependent thermodynamic quantities numerically one can randomly gener- 
ate a long Ising chain according to _p(J) and find out all the energy wells 
need to be considered at each value of T ln t .  The thermodynamic quanti- 
ties of the Ising chain are the sums of the corresponding quantities of the 
energy wells. 

There is an alternative way to generate the energy wells. We consider 
an arbitrary position n and generate a set of energies randomly. If J,  comes 
out to be the bottom of an energy well of desired barrier height, we 
calculate the thermodynamic properties of the well. Otherwise, we ignore 
the set of energies and repeat the process for a new position. Since all 
positions along the chain are equivalent for N >> 1, the number of energy 
sets generated (including the ones ignored) is equal to the number of spins 
in the chain. In real calculations we do not have to generate a large set of 
energies each time. It contains the following steps: 

(i) To begin, generate an energy, denoted by Jg, and assume that it is 
the bottom of an energy well. 

(ii) Generate the energy bonds to the fight of the bottom, J1,J2, 
J3, �9 �9 �9 until an energy less than Jg, or greater than Jg + A, is generated. If 
an energy less than Jg is generated, Jg is not the bottom of the well. We 
return to step (i) and repeat the process. If an energy greater than Jg + A is 
generated the right-hand side of the well is completed. 

(iii) Generate the energy bonds to the left of the bottom, J_l,J_2, 
J - 3  . . . .  until an energy less than Jg, or greater than Jg + A, is generated. 
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If an energy less than J~ is generated, return to step (i). If an energy greater 
than Jg + A is generated, the energy well is completed. 

(iv) Calculate thermodynamic properties of the energy well from Eq. 
(4.6). Go to step (i) and generate another energy well. 

After a large number (103-.104) of energy wells of various numbers of 
bonds have been generated, a thermodynamic quantity (per spin) of the 
Ising chain is presented by the sum of the corresponding quantities of all 
the wells divided by the total number of Jg generated (including those 
which fail to complete a well). For a given value of A the ratio of the 
number of energy wells completed to the number of Jg generated is equal to 
f~p(J)D(J,A)dJ. In our calculation this ratio is obeyed when more than 
103 wells are generated. 

The energy and the specific heat for T = 0.1 and 0.01, respectively, are 
shown in Figs. 4-6. Each data point represents an average over 103 energy 
wells. At T = 0.01 the energy is contributed mainly from the kinks at the 
bottoms of the energy wells. The energy calculated from the simulated 
energy wells is the same as Eq. (3.5) (solid line in Fig. 4). For T = 0.1, the 
numerically calculated energy is higher than Eq. (3.5). The difference 
comes from the kinks not at the bottoms of wells. 

From the way we define the time-dependent thermodynamic quanti- 
ties, the specific heat is related to the energy by 

C ( r , A )  = a E ( r , A ) / ~ r  (4.15) 

An alternative way to define the time-dependent specific heat is discussed 
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Fig. 4. Time-dependent energy of the Ising chain after quenched to a low temperature T. 
The data are calculated by assuming that even (or odd) states 'are in equilibrium in energy 
wells, Eq. (4.7). The solid line is a plot of Eq. (3.5). 
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in Section 7. For T i n t  << 1, we can use Eq. (4.12) to obtain 

C ( t ) / N  = ~rzT 1 (4.16) 

This quantity comes from states with one kink in a well. For T = 0.01 Eq. 
(4.16), as plotted in solid line in Fig. 5, is in good agreement with the 
numerical calculation which includes states with any number of kinks in an 
energy well. 

In Fig. 7 the time-dependent energy for T = 0.1 is compared with the 
Monte Carlo simulation results. In this figure each point (o) represents an 
average of 104 energy wells and the Monte Carlo data (+)  are averaged 
over 50 independent systems of 103 spins. Our results are somewhat lower 
than Monte Carlo results. The agreements are within a few percent. We 
have tried to calculate the time-dependent specific heat of the random Ising 
chain by the Monte Carlo method, either by determining the fluctuation of 
the energy or by taking the derivative of E ( T ,  A) with respect to T. The 
uncertainties in the calculations are too large to obtain useful information 
for comparison with our theory. 

It is important to note that to express Z E and Z o in terms of Z+ and 
Z is of importance in practical calculations. Consider an energy well of 30 
bonds, for example. If we calculate Z e and Z o by Eqs, (4.2) and (4.4), 
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Fig. 7. The energy plotted vs. time. Each data point (o) is the average of l04 energy wells. 
The Monte  Carlo data ( + )  are averages of 50 different systems. 
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about  102 multiplications need to be done [see Eq. (4.5)]. However, if we 
calculate ZE.o by Eqs. (4.1) and (4.3) directly, nearly 230,-~ 109 terms must 
be summed up. For  A >> 1, most energy wells contain a large number  of 
bonds. Equations (4.2) and (4.4) enable us to study the long time behavior 
numerically. 

5. ZERO-FIELD SUSCEPTIBIL ITY 

To study the time-dependent susceptibility we assume as above that all 
even states (or odd states) are in equilibrium in an energy well considered. 
For  an energy well of n bonds it is convenient to rewrite the Hamiltonian as 

I n n + l  
n = - ~ t _ ~ l J i S i S i +  1 -  h ~ xiS i ( 5 . 1 )  

�9 = i = 1  

where xi = x i_ t t i ,  and S; = x io  i. If the numbers of kinks at the energy 
bonds J1 ,J2  . . . .  are, respectively, k l , k  2 . . . . .  where k i = 1, or 0, then 

Si= Sl(--1) gi gi = kl -[- k2 -1-~ -{- k/-_ I ( 5 . 2 )  

For an energy well with even (or odd) states, the susceptibility is 

1 (  xiSi )21 _ 1  2 

where ( )e,o means a thermal average over even (or odd) states. Since x i as 
well as t i are ___ 1 randomly with equal probability, when we average over 
the distribution of t~, ( x ~ x j )  = 60.. Therefore 

n + l  ' X 0  < = - Sj ) e , o )  (5 .4)  Xe, o -T = 1 

Note that (i) 2 (Sj)e .  o = 1 f o r j  = 1 and n + 1, and (ii) if all even states and 
odd states are allowed to mix, all (S j )  = 0 in the zero field limit. 

5.1. Leading Term of the Susceptibility at Small T in  t 

As described in Section 4.2, when we average a thermodynamic 
quantity over the distribution of J,  the leading contribution at low tempera- 
tures comes from the one-kink states. At small A, the leading contribution 
to X also comes from one-kink states. If there is one kink at Jk of an energy 
well of n bonds, then S 1 = S 2 . . . . .  S~ = - S k +  1 . . . . . .  Sn+ l . The 
net magnetization of the well in the state is 

.+l ( k .+1 )  
mk = ~,, S i x i =  S1 ~]  xi - ~]  x i (5.5) 

i = 1  i = 1  i = k + l  
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Consider only the one-kink states; Eq. (5.3) gives 

1 ~ , i~ , j (m i -  mJ) 2expF-(s'+~)/Tl + " ' "  
Xo (5.6) 

2T  [2iexp(_~, / r  ) + . . .  ]2 

1 E (mi -- mg)2e-~X'/T 
= - + . . -  ( 5 . 7 )  

T i~g (1 + e-A' / r )  2 

Here g denotes the state with a kink at the bottom of the energy well, and 
Ai = J i -  Jg. Terms with more than one kind of Boltzmann factor are 
neglected. 

The susceptibility, Eq. (5.7), depends on the position of Jg in the well. 
When we sum over all energy wells, all possible positions of Jg should be 
considered separately: 

m)2\ ] X 1 ~ 2 2((mi_ g ,(~,)j 
N 2Tn=2 g=li=l 

X Jg+Ap j fA e-2Af00~176 ( )dJ] n-2 
J0 

e-%-z~/r  dA (5.8) 
(1 + e - a / r )  2 

Here the first factor 1/2 indicates that only one half of the wells are in odd 
states. ( )(x,/ is to be averaged over the signs of (xi} (or (ti}). The 
integrations over J ' s  are the same as before. 

Since x i = +_ 1 randomly, ((m i - rng) 2) = 41i - gl, the summations over 
g and i give 

s 2 ((mi - g /{x,)= 6 m )2\ 8 (n + 1)(n)(n - 1) (5.9) 
g=l i=l 

Equation (5.8) then reduces to 

X _ e -2A oo e-4Jgd~g- ]4 foAsech2~T e-zxdA (5.10) 
N T f0 [ 1 - e - J ~ ( 1 - e  -a )  

For small A, the first integration yields 

I = � 8 8  4 ( 1 - e - A ) +  . . . ,  A<<I (5.11) 

and the second integration yields 

I ' =  2Ttanh(  ~T  ) + O(T2)' T <<1 (5.12) 

Therefore, for small A we obtain 

X ( 1  + 3 A + . . .  ) t a n h ( ~ )  (5.13) 
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Fig. 8. Zero field susceptibility vs. Tint for T =  0.01 and  T =  0.1, respectively. Data  are 
obtained by assuming that even (or odd) states are in equilibrium in energy wells considered. 
Each data point is an  average of 103 wells. The solid line is the result when only one kink can 
exist in a well, Eq. (5.13), 

At low temperatures, and for t not too small, there is a range of t such that 
A<< 1 and ln t > 1. Then, t a n h ( l n t / 2 ) ~  1, and the susceptibility, x / N  

�89 + 3 A, does not explicitly depend on T (see Fig. 8). 

5.2. Numerical Calculation of the Susceptibility 

For general values of A, the time-dependent susceptibility of the Ising 
chain can be evaluated numerically by the method described in Section 4.3. 
We first generate a number of energy wells and for each well calculate XE 
and Xo by Eq. (5.4). To calculate (Sj)e, o numerically, it is convenient to 
write, apart from a constant factor ___ 1, 

11 tanh ~-~ __+ ]-I tanh (5.14) (Sj')E'O--Z+ + z -  i=1  i=j 

where the plus sign is for even states and the minus sign for odd states, and 
Z_+ are given by Eq. (4.5). In deriving Eq. (5.14) we rewrite Eq. (5.2) as 

Sj = Slexp[i~r(k, + k 2 + . . .  + k j_ , )  ] (5.15) 

For T = 0.01 and 0.1 the susceptibilities are shown in Fig. 8. Our 
numerical calculations also show that odd states contribute more to the 
time-dependent susceptibility than even states when T i n t  < 1. For T l n  t 
>>1 both even states and odd states contribute the same amount. Figure 9 
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Fig. 9. Zero field susceptibility vs. temperature for various times. The solid line is the 
equilibrium susceptibility Xeq/ N = l I T .  

shows the X vs. T plots for different times, At each time, a hump at a 
certain temperature is observed. 

6. THE EFFECT OF A MAGNETIC FIELD 

All our discussion above has been on properties under zero or infinites- 
imal field. We now turn to the case of nonzero field h. Apparently, as soon 
as h ~ O, the problem becomes far more difficult. We have not been able to 
carry out the corresponding simple analytic calculations in the previous 
sections. Below we present some heuristic arguments, which bring out some 
qualitative features of the model under h 4 = O. 

We shall restrict our discussion to the small field case, i.e., h << 1; the 
field is much weaker than the typical spin-spin interaction J. The most 
important effect of the field is its large scale effect. However, we do not 
have a clear-cut classification of scales, but only rough estimates. We shall 
first present a heuristic derivation of some ground-state and low-tem- 
perature properties, and point out the new energy and length scales implied 
by h. Then we shall obtain similar results from a simple scaling argument. 

6.1. Ground-State and Low-Temperature Properties 

We find it convenient to use the spin variables Si as given by Eq. (5.1) 
such that all the spin-spin interactions Ji are positive. In terms of S i, the 
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uniform magnetic field is turned into a random magnetic field with magni- 
tude h and a random sign x i, i.e., h i = xih. 

Let us first make a rough estimate of the ground-state energy. For 
h = 0, the answer is trivial, all S i are the same, i.e., there is no kink. 

When the field h is on, the picture changes drastically. Suppose the 
bonds Jn and Jm are l spacings apart. If all spins are up (S i = 1), then the 
field energy for spins between bonds Jn and Jm is 

- ~ hi =- --~m. (6.1) 
i = n + l  

If l is large, then the magnitude of q~,,, is of the order 

(Pmn~h l 1/2 (6.2) 

as a consequence of the central limit theorem. If ~,m happens to be negative 
and 

21~mn[ > Jn + Jm (6.3) 

then the energy would be lowered by flipping all the spins between J~ and 
Jm" TWO kinks are created, increasing the energy by .In + Jm, but the field 
energy is lowered by 2]~m, ]. 

Now we can see roughly how to generate the ground state configura- 
tion. Let Jc be a small quantity. Now we locate all bonds Ji < Jr i.e., locate 
all the weak bonds. The region between two successive weak bonds is a 
domain, of average size 

[~jc-(n+ 1) (6.4) 

rJ "J)dJ jn+ l since J~Pt ~ c is the number of weak bonds per unit length. Here 
we used Eq. (2.4) forp(J ) .  We then turn the spins in each domain to point 
along q, [see Eq. (6.1)], i.e., to follow the net field in the domain. If Jc is 
sufficiently small, the energy is lowered. 

Now we increase J~. Then smaller domains of spins can be turned to 
follow the net field in these small domains, the lower the energy further. 
This process is continued until Jc has been increased to become comparable 
to q~, i.e., 

Jc--hl ~/2 (6.5) 
According to Eq. (6.4), this is the same as saying 

J c ~ h  2/('+3) (6.6) 

l ~ h  -2(~+1)/(~+3) =- ~ (6.7) 

This ~ is an estimate of the smallest domain sizes. It is more instructive to 
think of smaller domains nested in larger domains [even though one can 
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think of the system as made up of small domains of size (, Eq. (6.7)1. The 
larger the domain, the stronger the effect of the random field (i.e., 

~ hl J/2). 
The ground-state energy per spin can now be estimated from Eqs. (6.6) 

and (6.7). 

[ E ( h )  - 

~ h  (2n+4) /(n+ 3) (6.8) 

Note that this is not proportional to h 2 as one might have expected. We can 
get the magnetization M and the susceptibility by differentiation: 

M/N_h(n+ 0/(n+3) (6.9) 

x/N~h-2/(~+3) (6.10) 

Clearly, they are not analytical functions of h. The susceptibility diverges as 
h ~ 0 .  

Next, let us assume a nonzero temperature T. Consider a domain of 
size l. The spins in the domain either line up along the net field in the 
domain or against it. One can easily write down the equilibrium properties 
of such a two-state system. The free energy is 

f ~ -  Tln2cosh(e/T) (6.11) 

where e~hl 1/2- J with J < Jc. Since J~h l  1/2 most domains have 
e.-~hl 1/2. The magnetization ( -Of /Oh)  is 

m ~ l  ~/2tanh(hl 2/2/T) (6.12) 

The magnetization per spin in this domain is m/l, and the total magnetiza- 
tion per spin of the Ising chain is thus 

M~,-'/2tanh(h~-T/----~2 ) (6.13) 

Define the temperature T h by 

T h = h ~ l / 2 ~ h  2/(n+3) (6.14) 

For T<< T h, Eq. (6.13) reduces to Eq. (6.9). And for T>> T h, we have 
M / N ~ h / T ,  as given by Eq. (2.12). In the later case, the cutoff ~ in Eq. 
(6.13) is not quite justified since domains smaller than ~ down to 1 / T  are 
involved. However, Eq. (6.13) is independent of the cutoff in this case. 

The specific heat contributed by a domain, - TOZf/o T 2, is 

c ~  ~ sech 2 e (6.15) 

Even though the order of magnitude of e is hl ~/2, here we must be more 
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careful. The specific heat comes from those domains which flip, i,e., with 
e < T. Here e is the kink energy (kinks are created or annihilated when a 
domain flips) minus the field energy. When these two energies nearly 
cancel, the domain would then contribute significantly to the specific heat 
and the entropy. We cannot simply write the specific heat per spin of the 
system as C / N ~ c / ~ .  Since the number of weak bonds per spin is 
~f~cj ,  d J ,  when we average c over the weak bonds, we obtain 

( t T sech2 J - Th( (6.16) 

At low temperatures T << T h << 1, Eq. (6.16) reduces to 

C ( 4 -  rh(,e + Th)~&( ~ ]2sech2 e 

~ f ?  T(Tx  + Th )"x2sech2xdx 
o o  

--  T;T + O(T~-  1T2) (6.17) 

Equation (6.17) is different from Eq. (2.9), C / N ~  T n+l, which is valid for 
Th << T << I, 

The main result of the above analysis is the appearance of the new 
length scale 4 =  h -2(n+O/(n+3), and the energy (or temperature) scale 
T h ,~, h 2/(n+3). When T<< T h << 1, the specific heat is C~T,~T, Eq. (6.17), 
and the susceptibility X ~ I / T h ,  Eq. (6.10). On the other hand, when 
T h << T<< 1, T h in the above results should be replaced by T, i.e., the 
specific heat is C ~ T  ~§ Eq. (2.9), and the susceptibility X ~ I / T ,  Eq. 
(2.12). Since n > - 1, T h >> h at small fields, there is a range of temperature 
between h and T h : h << T << T h << 1. Over this range, most of the domains 
are held fixed by the field. Only a small fraction of the domains can flip 
giving rise to the specific heat (and hence the entropy) of the order T~T. It 
is so far too crude an estimate. Later in this section, we shall see that this 
result also follows from a scaling argument, and puts Eq. (6.17) on a firmer 
ground. 

6.2. Approach to Equilibrium in a Field 

When the system is cooled from a high temperature, with a field on, 
down to a very low temperature, the system will be "closer to equilibrium" 
than it would be without the field. In short, the "field-cooled" state is more 
like an equilibrium state than the "zero-field-cooled" state. This seems to be 
an experimental observation for many real spin glassses. It also appears to 
be the case for our model system, although we do not claim that this model 
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system realistically describes the mechanism in the experimental spin 
glasses. 

As shown in the previous sections, when the system is quenched 
without a field, kinks are randomly distributed. The kinks trapped in large 
energy wells can hardly get out. On the other hand, when a field is on, a 
large domain of size l will line up with the field provided that hl 1/2 >> T', if 
T' is high enough for equilibrium to take place rapidly. When the system is 
cooled down from T' to T, this domain is already in the "right equilibrium 
configuration." Thus the metastable large energy wells appearing in the 
zero field ease no longer appear in the field-cooled case. If T' is compara- 
ble to T h, then the field needs to be strong enough to make ~ small enough 
in order that metastability is no longer present. In other words, if Th~hl  1/2, 
then 

( T h )  2 h-2(n+')/(n+3)=~ (6.18) 
/ ~  --fi- = 

Thus, most of the relevant domains are in equilibrium if T ' ~  T h. 

6.3. The Scaling Argument 

The above discussion has been very crude. The classification of scales 
appears to be rather artificial. Here we shall use directly a simple scaling 
argument to obtain the main results given above. 

The probability that a kink exists at a bond depends on the bond 
energy J as well as on the field h. If we assume that the probability fk is a 
generalized homogeneous function then 

fk(J,  h) = hYK(J /h  x) (6.19) 

In the limit J << h, the probability to have a kink at J should be indepen- 
dent of h, and equal to 1/2. This requires that y = 0, and K(0) --- 1/2. The 
exponent x is to be determined. 

From Eqs. (2.4) and (6.19) the kink energy per spin is 

= Ah("+2)XKn+ 1 (6.20) 

and the probability to have a kink at a given position is 

X = f o ~ p ( J ) K ( J / h  ~) dJ 

= Ah(n+l)XKn (6.21) 
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where 

Kn = fo ~z "K(z) dz (6.22) 

The kinks divide the chain into sections of various lengths with average 
length lay = )t-1. In the low field limit the number of spins in a section of 
length l is much greater than 1. As there is no kink inside a section, 
the randomly oriented spins have a spin excess proportional to ~ .  There- 
fore the magnetization per site in this section is proportional to ~ / l  
= (l) -~/2. We can assume that the magnetization per spin of the Ising 
chain is proportional to (lav) -~/2= ~1/2, with (field-independent) propor- 
tional constant B, i.e., 

M / N =  B[Ah(n+l)XK,] 1/2 (6.23) 

The total energy per spin (zero-field ground state energy = 0) is the 
sum of the magnetic energy - h M / N  and the kink energy Ek/N, 

E /N = Ah("+2)XK,+, - Bh(~'/2)(n+I)+X(AK,,) '/2 (6.24) 

To minimize the free energy at small h we require that the power (x/2)(n + 
1) + 1 be as small as possible, while the power of the positive term (n + 2)x 
be not less than (x/2)(n + 1) + 1.This gives x = 2/(n + 3), and the total 
energy 

E/N=[AK,+, -  B(AKn)1/2]h (2"+4~/("+3~ (6.25) 

To determine the function K(z) we further require that the coefficient 
in Eq. (6.25) be as negative as possible, with the restriction that K(z) is a 
decreasing function and 0 < K(z) < 1/2. We have tried several functions K 
with adjustable parameters. It comes out that the lowest energy is obtained 
when K(z) = 1/2 for z < [B2(n + 1)/2A] 1/('+3~ and = 0 otherwise. The 
minimized energy is 

E n + 3  (_~)( ,+2)/( ,+3)(  A )'/("+3'h(2,+,,/(n+~ ) (6.26) 
= 2 n + 4  

and the magnetization M = - O E / O h  is 

N--"2--M-(B2) (n+2)/(n+3, ( A  ~ ]~/(~+3)h(n+ 1~/(n+3~ (6.27) 

The constant B is difficult to determine even when K(z) is known. 
In the following we determine the coefficient B in a self-consistent 

way. Our calculation only provides an upper bound of the true ground- 
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state energy. Assume that the energy bonds can have a kink with fk = 1 /2  
for J < Jc, and no kink exists at bonds with J > Jc. The probability that a 
given bond has energy less than J~ is simply 2X [X is defined in Eq. (6.21)]. 
If we imagine that the Ising chain is divided into sections (or domains) by 
these low-lying energy bonds (J < Jc), the probability that a given section 
has length l is 

p, = 2)~(1 - 2)~)'-' (6.28) 

For sections of I spins, the distribution of the spin excess, m = ~ =  lai, 
follows the Gaussian distribution for ! >> 1, 

1 ~I/2 [ _ m  2 ) 
g ( l , m ) ~ ( ~ )  e x p k ~  J (6.29) 

Therefore the magnitude of the spin excess has the average value [rn I 
= (21/~r) 1/2 for sections of l spins. 

When the magnetic field is turned on, if the spin excess of a section is 
parallel to h, nothing happens to the section. On the other hand, if the spin 
excess is antiparallel to h, we assume that all spins in the section reverse 
their directions. A kink occurs at the junction when one section reverses its 
spins and the other section does not. Exactly one half of the low-lying 
energy bonds have a kink. The magnetization is then 

M = ~"~= 1(2l/~ 1 - 2h)'-~2), ___~- (6.30) 

N E7=,1(1 - 2X)'-'2X 

Here we have used 

1 + # ;  + �9 �9 �9 

~ (2X) -3/2 (6.31) 
- -  2 

for x = 1 - 2X, and X<< 1. Equation (6.31) is correct in the low-field limit, 
where X<< 1. But Eq. (6.30) is only an approximation because many 

sections have spin excess much less than ~/~/~r. These sections may not 
behave as we assumed to reverse their spin directions. 

Equation (6.30) gives the approximate value of the proportional con- 
stant in Eq. (6.23), B = 1. By setting B = 1 in Eqs. (6.26) and (6.27) we 
obtain an upper bound of the energy and a lower bound of the magnetiza- 
tion. 

To check our result, we have calculated the magnetization of Ising 
chains of 104 spins, with p ( J ) =  e x p ( - J ) ,  by the transfer matrix method. 
For the exponential distribution of J, A = 1 and n = 0 at small J. The M 



Low-Temperature Behavior of a One-Dimensional Random Ising Model 743 

.q 
in (M) 

-3 .0  �9 : ~ . . . . . . . .  " ; -  
�9 : : : ~ . . . . . .  f"  - 

3 .5  - 4  4 . . . . - "  �9 

4 . 0 - -  

2. 
F I I I I I I I I I I I I I I I I I I I I I I I J I I J I 

- 1 0  -9  -8  

In h 

F i g .  10. M a g n e t i z a t i o n  vs .  e x t e r n a l  f i e l d  in  t h e  l o g a r i t h m i c  s c a l e  f o r  12 s y s t e m s  o f  104 s p i n s .  

D a t a  a r e  o b t a i n e d  b y  t h e  t r a n s f e r  m a t r i x  m e t h o d .  T h e  s o l i d  l i n e  r e p r e s e n t s  t h e  b e s t  f i t  

M/N = 0 . 7 4 h  1/3. T h e  d a s h e d  l i n e  is f r o m  E q .  (6 .27 ) ,  M/N = 0 . 6 3 h  1/3. 

vs. h plot in logarithmic scale is shown in Fig. 10. In this figure, data of 12 
different systems in the magnetic field from 3 • 10 -5 to 5 • 10 -4 are given. 
For  a larger field, the h ]/3 power law is not obeyed exactly; and for smaller 
field, the fluctuation in M due to finite size of the system is comparable to 
the mean value of M. 

The best fit to the data gives M / N  = 0.74h ]/3. If we set n = 0, A = 1, 
and B = 1, Eq. (6.27) yields M / N  = 0.63h ~/3. The exponent agrees very 
well. The coefficient obtained from Eq. (6.27) is 15% smaller than that 
obtained from the exact transfer matrix method. The agreement is not bad 
although we have made several approximations to arrive at Eq. (6.27). And 
B = 1 gives only a lower bound of the true magnetization. 

The free energy per spin at a nonzero temperature can also be assumed 
to follow a scaling form 

F(h, T) = - ---f f (6.32) 

where ~ is defined by Eq. (6.7). For  T ~  0, we must h a v e f ( x ) ~ x  for large x 
in order that T drops out. Thus we get back to the result Eq. (6.8). For large 
T and small h, we expect F to be analytic in h. The leading terms in f (x)  
for small x, that make F analytic are x -( '+1),  x (1-n)/2, and x 2, since 
~-l(h~l/2)-(n+l) = 1, ~-l(h~l/2)(1-n)/2= h and ~-l(h~1/2)2= h2. The 

term x (~-n)/2 should vanish because F is an even function of h, thus we 
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have for small field 

F(h, T) ,~  - T "+2 h2 - - ~ +  " ' "  for T h<<T<<l (6.33) 

Equation (6.33) predicts M/N- -~h /T ,  and C / N ~ T  ~+1 as before. 
The low-temperature (T<< Th) specific heat can be obtained by ex- 

panding f (x )  for large x: 

f ( x ) ~ x  + const + x - '  + . - .  (6.34) 

The constant term should be zero so that the entropy vanishes at T - -0 .  
The specific heat per spin is 

C _ T o2F 
N 0T 2 

02 T 2 

~T~,T (6.35) 

here h~ 3/2= h" h -3(n+l)/(n+3) = h -2n/(n+3) = Th -n.  This reconfirms the 
result of Eq. (6.17). 

It is interesting to note that when n = 0 (the Gaussian distribution, or 
the exponential distribution) the specific heat, and hence the entropy 
appears to be independent of h. Such approximate independence of h has 
been observed in model spin glass of long-range interaction with a Gauss- 
Jan distribution o f p ( J ) ]  ~ 

7. CONCLUSIONS AND DISCUSSION 

We have studied the low-temperature properties of the Ising chain with 
nearest-neighbor random interaction. At low temperatures, the equilibrium 
properties are determined mainly by the distribution of bond energies with 
J << 1, where p(J ) ,~  AJ n. The leading contribution to the thermal energy is 
proportional to AT "+e. This energy is contributed by kinks at the energy 
minima alone. At zero temperature and in a small field, we have found that 
the magnetization is proportional to h n+ 1/n+3. For n = 0, the exponent 1/3 
agrees with that predicted from exact transfer matrix calculation for Ising 
chains randomly generated according to the distribution p(J)  = e -J 

The dynamic properties of the system depend on the whole range of 
the distribution function p(J).  Especially the long time behaviors depend 
heavily on the distribution at J >> 1. Our initial condition (set t = 1) is the 
state that kinks exist only at energy minima with probability 1/2. This state 
can be obtained approximately at low temperatures when the system is 
suddenly quenched from high temperatures, or when a strong magnetic 
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field is suddenly switched off. After a short period of fast relaxation, all 
kinks move down to the energy minima, and annihilate in pairs. 

Starting from our initial state, the kinks at the bottom of the energy 
wells can climb over the energy barrier and move to other wells. The time 
needed for a kink to climb over a barrier of height A is about t ~ e  A/T. 
Therefore at time t, energy wells with barriers lower than A = Tin  t need 
not be considered. At extremely low temperatures we can assume that at 
most one kink can exist in a well. A crude result for the relaxation of the 
thermal energy and the remanent magnetization is obtained. The magne- 
tization relaxes much slower than the thermal energy. This is qualitatively 
in agreement with the Monte Carlo data. Our crude theory, however, 
predicts faster relaxation than the Monte Carlo simulation both for the 
thermal energy and for the remanent magnetization. 

For nonequilibrium systems, the energy and the magnetization are well 
defined quantities; but their derivatives are not. The energy wells are 
defined in terms of minimum barrier height A = Tln t, which is tempera- 
ture dependent. When we want to calculate the specific heat, for example, 
we need to specify how it is defined. If we defined it in terms of local 
energy fluctuations at a given temperature, we want to keep A fixed, i.e., 
C= OE(T,A)/OT. If we define it in terms of measurements of energy 
changes carried out at different temperatures, then we must consider the 
change in A, and define C = ~E(T, t)/OT. 

At low temperatures, and for T l n t  < 1, the time-dependent thermody- 
namic properties are contributed mainly from the odd states; and they vary 
with time logarithmically, i.e., A (t) = A (0) _+ BTln t, for general distribu- 
tion p(J). At T l n t  >> 1, the even states and the odd states contribute the 
same amount to each thermodynamic quantity. The time-dependent ther- 
modynamic quantities approach their equilibrium value very slowly. The 
thermalization depends on the dis t r ibut ionp(J)  at large J. For  example, the 
thermal energy decays approximately as p2(A), from A >> 1, for the expo- 
nential, or the Gaussian distribution. 

In this paper we have assumed that the time required for a kink to 
climb over a barrier of height A is t - - r e  A/r. Here ~"--1 is the time 
required for a kink to move to a nearest-neighbor lower energy bond. Since 
all energy wells with the same barrier height may have very different 
structure, the time required for a kink to move out of an energy well should 
depend on the details of the energy bonds in the well, such as the number 
of bonds in the well, the position of the bottom, etc. We have not taken this 
into consideration. It is very difficult to do so. An important feature is that 
for large A, the average number of bonds in the energy well is also large. 
The time required for a kink to move out of the energy well should be 
~ e  A / T  X (number of bonds), rather than e A/T. This is probably the main 
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reason that our theory predicts a faster relaxation of the energy and 
magnetization than the Monte Carlo results. 

When the magnetic field is turned on, somehow the mathematical 
problem becomes much more difficult. Nevertheless, we have drawn a few 
interesting conclusions of plausible arguments. Perhaps the most important 
conclusion is that the field has a strong effect at large scales and it 
eliminates the metastability of large energy wells. Also important is the new 
temperature scale T h = h 2/(n+3) . When T h << T<< 1, the specific heat and 
the susceptibility are nearly field independent. On the other hand, when 
T << T h << 1, the specific heat is proportional to T~T,  and the susceptibility 
is temperature independent, ~ 1 / T  h. For the case n = 0, i.e., p (0)v  ~ 0, e.g., 
the Gaussian, or the exponential distribution of p ( J ) ,  the specific heat, and 
hence the entropy is approximately independent of h for the entire low- 
temperature range. 

The properties of this model do bear some resemblance to those of 
spin glasses. The major problem in understanding spin glass would be the 
enumeration of metastable states in a straightforward way. The above 
analysis shows that the enumeration can be very different from the inde- 
pendent cluster approximation. It also shows that we are quite far from 
being able to study general metastable states effectively. 
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